The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion.
نویسندگان
چکیده
Auxin is known to regulate cell division and cell elongation, thus controlling plant growth and development. Part of the auxin signaling pathway depends on the fine-tuned degradation of the auxin/indole acetic acid (Aux/IAA) transcriptional repressors. Recent evidence indicates that Aux/IAA proteins play a role in fruit development in tomato (Solanum lycopersicum Mill.), a model species for fleshy fruit development. We report here on the functional characterization of Sl-IAA17 during tomato fruit development. Silencing of Sl-IAA17 by an RNA interference (RNAi) strategy resulted in the production of larger fruit than the wild type. Histological analyses of the fruit organ and tissues demonstrated that this phenotype was associated with a thicker pericarp, rather than larger locules and/or a larger number of seeds. Microscopic analysis demonstrated that the higher pericarp thickness in Sl-IAA17 RNAi fruits was not due to a larger number of cells, but to the increase in cell size. Finally, we observed that the cell expansion in the transgenic fruits is tightly coupled with higher ploidy levels than in the wild type, suggesting a stimulation of the endoreduplication process. In conclusion, this work provides new insights into the function of the Aux/IAA pathway in fleshy fruit development, especially fruit size and cell size determination in tomato.
منابع مشابه
Constitutive repression and activation of auxin signaling in Arabidopsis.
Aux/IAA proteins are proposed to be transcriptional repressors that play a crucial role in auxin signaling by interacting with auxin response factors and repressing early/primary auxin response gene expression. In assays with transfected protoplasts, this repression was previously shown to occur when auxin concentrations in a cell are low, and derepression/activation was observed when auxin con...
متن کاملUnder-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits.
Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom)...
متن کاملA dynamic interplay between phytohormones is required for fruit development, maturation, and ripening
Plant species that bear fruit often utilize expansion of an ovary (carpel) or accessory tissue as a vehicle for seed dispersal. While the seed(s) develop, the tissue(s) of the fruit follow a common progression of cell division and cell expansion, promoting growth of the fruit. Once the seed is fully developed, the fruit matures and the surrounding tissue either dries or ripens promoting the dis...
متن کاملSl-IAA27 gene expression is induced during arbuscular mycorrhizal symbiosis in tomato and in Medicago truncatula.
Aux/IAA genes play a pivotal role in auxin transcriptional regulation. Their functions were mainly studied in Arabidopsis through analysis of gain-of-function mutants. In the tomato, the Solanaceae reference species, different studies on Sl-IAA down-regulated lines showed specific role for Sl-IAA genes. Our recent work revealed that the Sl-IAA 27 gene displays a distinct behavior compared with ...
متن کاملFunctional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana.
Auxin regulates various aspects of plant growth and development. The AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode short-lived transcriptional repressors that are targeted by the TRANSPORT INHIBITOR RESPONSE1/AUXIN RECEPTOR F-BOX proteins. The Aux/IAA proteins regulate auxin-mediated gene expression by interacting with members of the AUXIN RESPONSE FACTOR protein family. Aux/IAA function is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2014